If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-15x=360
We move all terms to the left:
x^2-15x-(360)=0
a = 1; b = -15; c = -360;
Δ = b2-4ac
Δ = -152-4·1·(-360)
Δ = 1665
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1665}=\sqrt{9*185}=\sqrt{9}*\sqrt{185}=3\sqrt{185}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-3\sqrt{185}}{2*1}=\frac{15-3\sqrt{185}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+3\sqrt{185}}{2*1}=\frac{15+3\sqrt{185}}{2} $
| 2(3^2x+5)=54 | | 2x+8+3x-1=32 | | X^2/2=5x | | r/14=7 | | -2y+14=8 | | (2/3x)-4=20 | | B(X)=2x+63 | | 16m+-16m-4m-4=16 | | (5x+4)(4x+7)=0 | | 32-c=-12 | | (90-x)=5(x) | | -3v+-v=16 | | 6^(4x)=63 | | 2(3+3)-4(5x-3)=x(x-3)-x(x+5) | | 0.75x+2=0.125x-3 | | 16k-16k+3k=18 | | 10x+50+45=180 | | 12y+8=15 | | 50+45+10x=180 | | 64-32=4-13y | | 2(x-3/5)=2/7 | | n3=−19 | | 14=q—9 | | 5w=−30 | | (2x+36)+6x=180 | | 2g-1=13 | | 3+6x=18+2x+9 | | -3m+13m=-10 | | 19a+-16a=-9 | | 16b+6b-15b-4=10 | | 4x-5x+9x-2x=84 | | 6x+78=108 |